XR22 VCO FT

VCO with AM Input and FSK (Frequency Shift Keying)

I. Feafures

- AM (Amplitude Modulation) Input
- Ring modulation
- CV controllable sine/triangle volume level
- Advanced waveform generation by AM
- RGB-LED for optical control
- FSK (Frequency Shift Keying)
- Pulse and ramp generation
- Switching between two different frequency CVs
- Advanced waveform generation by FSK
- Dual-color LED for FSK-mode indication
- LFO/Bass/High Frequency Mode
- Switchable Sync-Mode
- Eurorack Module
- Width: 12 HP
- Dimensions: $128,5 \times 60,6 \mathrm{~mm}$ Depth: 40mm
- Supply Voltage: $\pm 12 \mathrm{~V}$
- Current: +12V:<103mA; -12V: $\approx 42 \mathrm{~mA}$
- Available with banana or $3,5 \mathrm{~mm}$ minijack sockets

Minijack Version

Banana Version

Drawing

Modular

2. AM and FSK

2.1 AM (Amplitude Modulation)

The $/ \downarrow$ output (17) amplitude varies linearly (へ multiplication) with the internal DC voltage set by knob 'Gain' (12) or by a control voltage applied to "AM in" ((14)). The modulation amount of this input can be adjusted with knob 'AM In ' (11) (See chapter 3.Functions). Negative CVs will cause phase inversion of the \downarrow / \downarrow waveform. The behaviour is optically indicated by the rgb-LED 'AM' (9).
Examples:

2.2 FSK (Frequency Shift Keying)

The frequency of the XR22 VCO is controllable by two independent frequency control sections F1 and F2 with independent manual frequency controls and CVins; either one or the other of these routes can be activated by an external logic signal applied on socket "FSKin" (15) and/or by switch "FSK" ©
Switch "FSK" (6) selects the FSK mode: F1, F2 or selfswitching by the VCO's $\square \downarrow$-output. In this self-keying mode, the rising and falling edges of the triangle waveform (and the hi/lo times of the squarewave) can be separately and independently controlled.

Switch " $\Sigma_{\text {com }} \mathrm{CV}_{\mathrm{F} 2}$ " 10 is adding the $\mathrm{F} 1-\mathrm{CV}$ s to F 2 ; this will ensure $1 \mathrm{~V} / \mathrm{oct}$. tracking if both routes are used simultaneously (for example in the self-switching $\Gamma \square$-mode).

Examples:

 Modular

Introduction

For better understanding, please read first about the switch 'FSK' (6) and LED 'FSK' (8) :
(6) FSK mode switch (frequency shift keying) In upper position: Only F1 is active; LED 'FSK' (8)=o green In middle position: Only F2 is active, LED 'FSK' (8)= o red In lower position (" $ا$ ") the squarewave output of the VCO is internally connected to the FSK input and the oscillator automatically shifts between frequencies F1 and F2. In this mode, the oscillator produces ramp and pulse signals, provided on output $/ \vee$ © (ramp) and \sqcap (16) (pulse). The rising and falling time of the ramp edges (and also the duration of high and low levels on (16)) are separatly adjustable with the frequency knobs for F1 and F2 (and CVin's1 and CVin's2).
(Also see chapter 2.2 about FSK and (10)

(8) LED FSK mode

- Green $=$ F1, F1 CV ins (left half on the module panel).
- Red $=$ F2, F2 CV ins (right half on module panel).

Functions

(1) $\mathrm{Fl} / \mathrm{com}$ Coarse manual control of frequency Fl . Range is ≈ 8 octaves. If switch $" \Sigma_{\text {com }} \mathrm{CV}_{\mathrm{F} 2}$ " 10 is in lower position, this knob also affects frequency F2. See more under (10, (6).
(2) F2 Coarse manual control of frequency F2. Range is ≈ 8 octaves.
(3) F1 fine tuning for frequency $F 1$. Range is \approx two half notes.
(4) Frequency range selector The oscillator has 3 switchable main frequency ranges with each 4 octaves distance between the switch positions:

1. Lo (switch in left position) for LFO applications and/or tremolo-like ringmodulated sounds
2. Mid (switch in middle position) for bass or sub-bass sounds
3. Hi (switch in right position) for mid-range and high audio frequencies

Because the frequency CV-ins of the internal VCO chip are not linear over the entire audio range, it is recommended to use the 'Mid' position for bass sounds and the 'Hi' mode for higher frequencies (although it is possible to produce low frequencies in the 'Hi' mode too). This ensures better 1V/oct. tracking in the lower frequency regions.

Modular

(5) F2 fine tuning for frequency F2. Range is \approx two semi notes.
(6) FSK mode switch see above ("Introduction")
(7) $া \wedge$ Waveform selector switches between \downarrow (sinewave) or \downarrow (triangle) oscillator waveform on output socket (1).
(8) FSK mode LED: see above ("Introduction")
(9) LED 'AM' for optical control of the amplitude modulation on output socket \sim / \vee (1):

- blue: negative voltages on the oscillator's output
- red: positive voltages on the oscillator's output
- \quad green: AM input voltage amount on "AM in" (14); both for negative and positive voltages In 'normal' audio-range oscillations (with poti "Bypass" ${ }^{(13}$ turned cw) the color will become purplelike as a mixture of red and blue; while the knob "Bypass" ${ }^{(13)}$ is turned ccw (and a signal is applied on 'AM In ' (14)) it will change into white and green, indicating the original signal proportion (from AM input) on output \vee / \sim (17).
(10) $\Sigma_{\text {com }} \mathrm{CV}_{\mathrm{F} 2}$ switch changes the routing between the frequencies F 1 and F 2 . In the upper position, both frequencies F1 and F2 work independently and will be controlled separately by their respective frequency knobs and/or CV inputs.
In the lower position, knob "Fl/com" (1) and sockets "F1/com CV" (2) "Fl/com CV IV/Oct" (23) affect both F1 and F2. This coupling ensures that the ratio between F1 und F2 remains the same, and tracks $1 \mathrm{~V} /$ oct. using both frequencies within the FSK option. The ratio can only be changed by the "F2" knob (2) or the F2 CV inputs (24, (22).
Note that in this mode the frequency range is expanded and that for F2 four independent CV inputs are now available.
(11) AM in level Input level control for the signal applied on socket 'AM In ' ${ }^{(14)}$ for amplitude modulation of the sinewave/triangle, provided on output $/$ / ©1.
Note: This voltage is added to the DC voltage set by knob 'Gain' (12).
(12) Gain adjustment regulates a internal DC voltage for level control of the \sim / \downarrow oscillator signal: In middle position, the oscillator signal is almost surpressed and can be used for ring modulation or oscillator volume level control by a signal applied on 'AM In' (14); the denter in middle position " 0 " may be used as orientation.
This knob regulates an internal DC offset voltage of ca $\pm 2,5 \mathrm{~V}$ (added to the AM-input signal, which level is adjustable by knob (11) ; - a positive in clockwise and a negative voltage in ccw positions. In ccw positions the \downarrow / \vee - phase is becoming inverted (See also "Examples" in chapter 2.2 "FSK"). In some applications the "Gain" knob may be used to alter the waveshape (by adding more or less voltage to your input signal); e.g. if you feedback the \downarrow / \vee output (1) to the AM-Input (14) and adjust (1) and (12) carefully)

Modular

(13) Bypass Ratio between the signal input "AM in" (14) and the oscillator \downarrow / \downarrow output. The mixed signal output socket is \downarrow / \downarrow (17). For optical control the rgb-LED 'AM' (9) is showing the mixed signal behaviour: • green for the AM input amount (with knob "Bypass" (${ }^{3}$ turned ccw) and •/• red/blue for the oscillator's output signal ("Bypass" (13) turned cw)
(14) AM input Amplitude modulation input for the \downarrow / \downarrow section of the VCO. The input level can be adjusted with knob (11). The input signal proportion can be mixed to the waveform output with Bypass control ${ }^{(3)}$, provided on output \sim / \vee (17) (also see chapter 2.1 about amplitude modulation). The input signal (both negative and positive polarites), when it is becoming active at the \sim / \downarrow output (17) (with knob "Bypass" (13) turned ccw), is visually indicated by the \bullet green colour of the rgbLED 'AM' (9.
(15) FSK in is a logic input. When the "FSK" (6) switch is in the middle position ("F2") and a voltage greater than $\approx+2 \mathrm{~V}$ is applied to the FSK input (e.g. gate signal, squarewave), the internal switch will be switched from F2 to F1 (F2/F2 CV (Led 'FSK' (8) \rightarrow o red) to F1/F1 CV (Led 'FSK' (8) \rightarrow o green) . Note: If switch "Com" (8) is active, the " $\mathrm{Fl} / \mathrm{com}$ " knob (1) and the inputs " $\mathrm{Fl} /$ comCV" (2) and "F1/comCV IV/Oct" (3) affect both frequency channels F1 and F2.
(16) $\lceil\sqcup$ Squarewave output Level between $\approx 0 V(G N D)$ and +5 V . In FSK mode " $\mathrm{\square}$ " (Switch "FSK" © lower position): pulse waveform output.
Note: In F1 mode (0 Green) the LED 'FSK' (8) is indicating the peaks (+5 V) of the squarewave or pulse signal, while in F2 mode the LED (\odot Red) is indicating the gaps (0 V).
(17) $/ \downarrow$ (sine/triangle) output or ramp waveforms output when switch "FSK mode" (6) is in lowest position (" г ").
The controller "Bypass" (B3) adjusts the AM-Input $\leftrightarrow \downarrow /$-oscillator output ratio. Fully clockwise: $^{(1)}$ The \downarrow / \downarrow-oscillator output is 100%. Fully counterclockwise: The \downarrow / \downarrow-oscillator output is 0%, AM-input (14) is 100%. Thus, the original to the "effect" signal can be mixed ($\hat{=}$ "dry/wet") when the oscillator is used as a ringmodulator, or for modulation options when it is used as a CV-source. The output voltage range of the \vee / \aleph-oscillator is adjustable with trimmer 5 on the backside pcb (See chapter 4.Adjustmenf). The rgb-LED 'AM' © is for optical control of this output.
(18) $\mathrm{Fl} /$ com CV Manual control adjusts the input level of $\mathrm{Fl} / \mathrm{com} \mathrm{CV}$ in (2).
(19) $\mathrm{Fl} / \mathrm{com} \mathrm{CV}$ inversion switch Inverts the polarity of the signal on socket $\mathrm{Fl} / \mathrm{com} \mathrm{CV}$ in (22).
(20) F2 CV Manual control adjusts the input level of F2 CV in (24).
(21) F2 CV inversion switch Inverts the polarity of the signal on socket F2 CV in (24).

Modular

(22) $\mathrm{Fl} / \mathrm{com} \mathrm{CV}$ in Frequency control voltage input for $\mathrm{Fl} / \mathrm{com}$. Level can be adjusted by knob (18) and the polarity inverted with switch (19). See also (10, (6).
(23) $\mathrm{Fl} / \mathrm{com} \mathrm{CV} 1 \mathrm{~V} / \mathrm{Oct}$ in 1V/Octave input for $\mathrm{Fl} /$ com. See also (8, © (6. (IV/oct. adjustment, if necessary, see chapter 4.Adjustment)
(24) F2 CV in Frequency control voltage input for F2. Level can be adjusted by (2) and the CV polarity inverted by switch (21).
(25) Sync in \downarrow F2 IV/Oct in ('Sync mode' new from Rev.6) The functionality of this socket can either be a logic input for resetting the oscillator (Sync mode) or be alV/octave input for F2, depending on the state of switch (26).

- In upper position of switch (26) 'Sync', a positive-going trigger signal will reset the oscillator- wave and restart it.
- The \vee / \vee - wave will restart from its maximum deflection point (positive edge with knob 'Gain' in cw position or positive AM CV; negative edge with knob 'Gain' ccw or negative AM CV)
- The squarewave ($\square \downarrow$) will restart the oscillation on the positive edge $(+5 \mathrm{~V})$.
- In lower position of switch (26) 'F2-CV IV/Oct.', the plug is working as a IV/octave input for F2 (as known from previous versions of the XR22VCOFT)
(26) Switch Sync \downarrow F2-CV IV/Oct. (new from Rev.6) This switch determines the function of socket (26):
- Switch in upper position: Sync Mode

A positive-going trigger on socket (25) will reset the oscillator (Read also under point (25).

- Switch in lower position: F2 CV IV/Oct. Mode

The socket (25) is working as a 1V/Octave CV input for F2 (as previous).

Sync Mode (from Rev.6)

With switch (28) in upper direction 'Sync'; socket (25) will become a logic signal input (for trigger/ gate/ squarewave or similar). A positive going edge from $0 \mathrm{~V} \rightarrow+5 \mathrm{~V}$ (min .) is resetting the oscillator:
With knob 'Gain' (12 in cw position or a positive AM CV,
The oscillation will restart at its positive peak.
the

 Modular
4. Adjustment

The XR22 VCO FT is already carefully adjusted, no further calibrations should be needed; for better understanding or in the case of unintended detuning, here is an overview of the adjustment control elements:

1 and 6 : 1V/Octave Adjustment

The VCO is already carefully adjusted to IV/Oct. If you realize that the XR22 VCO FT isn't in tune with your other analog synthesizer equipment, it may be necessary to adjust it.

Procedure (Suggestion):

1. Put range switch (4) in right position 'Hi'. Adjust F1 \& F2 knobs (1) \& (2) to $\approx 4,2$ on scale or $\approx 1000 \mathrm{~Hz}$ (this is corresponding to 0 volts CV internally)
2. Connect a CV from a keyboard (or a similar CV source) both to your favorite VCO's 1V/oct. input and to the XR22 VCO F1/com lV/oct. input (33). Put switch " $\Sigma_{\text {com }} C V_{\text {F2 }}$ " (10) in lower (F1-F2 common mode) and switch "FSK" © in upper position ("F1").
3. Play a note on your keyboard in the middle range, e.g. "c", or " cl ". The note should be nearby to the tone you have adjusted on the XR22 VCO.
4. Adjust poti "Fl" (1) and fine tuning (3) or adjust the frequency of the reference VCO, until the pitch of both oscillators is the same.
5. Play a note ≈ 3 octaves higher ($\hat{=} 8000 \mathrm{~Hz}$). Adjust trimmer "F1 IV/oct" 1 until the XR22 VCO is tracking to the $2^{\text {nd }}$ VCO.
6. Go back to step "4" and repeat the next steps until both oscillators are in tune.
7. Calibrate XR22 VCO and the reference oscillator again to a tone around 1000 Hz ($\approx 4,2$ on scale).
8. Play a note 3 octaves lower (if this is not possible, turn the knob F1 (1) to a lower frequency and play a 3 octave higher note on your keyboard, so that it will be almost the same tone like it would be without keyboard and with the frequency knob in 4,2 -scale position or $\approx 1000 \mathrm{~Hz}$).
9. Calibrate the trimmer 6 ($\mathrm{Lo}-\mathrm{F}$ adj.) until the 3 -octave lower notes are in tune (e.g. starting from $1000 \mathrm{~Hz}, 3$ octaves lower will be 125 Hz).
10.Repeat from step 7 and/or optionally from step 4 until best matching is achieved.
11.Repeat the same procedure with "F2" (with switch "FSK" © in middle position and the respective knobs and trimmers) - Note: With switch " $\Sigma_{\text {com }} \mathrm{CV}_{\mathrm{F}}$ " (10) in lower position the Fl knob (1) and the 1 V /oct CV input (33) are both working for F1 and F2.
10. Compare F1 and F2 by switching the FSK switch (6) from one frequency to the other; repeat the tuning and adjustment steps 1.- 11. until both frequencies are perfectly matching and in tune with the external keyboard/VCO.

Modular

2 Bus CV

- Jumper "JP1" in "on" position (on backside board 亿): The Bus CV (if in use) of the 16 pol Header is controlling the XR22 VCO's frequencies.
- Jumper "JP1" in "off" position (on backside board Z): The Bus CV is not connected.

3 Potentiometer 'Gain' (12) 0-point adjustment

1. Turn knob 'Gain' (12) in middle position (denter locked)
2. Adjust trimmer $\operatorname{Tr} 73$ for minimum output amplitude on \vee / \vee output (1) (with no AM-Input signal applied on (14) and knob 'Bypass' (3) fully turned clockwise) - check the LED 'AM' (9) for minimum lightning intensity.
$4 \vee / \vee$ - Output DC-Offset
No DC offset voltage should overlay the oscillator's \downarrow / \star - Output (17) (with the knob 'Gain' (12) in middle position, the knob 'AM in' (1) turned fully left and knob 'Bypass' (B3) turned fully cw). Apply the \checkmark / \vee - Output to a frequency CV-input of a $2^{\text {nd }}$ oscillator or to the AM-input of a $2^{\text {nd }}$ XR22 VCO. There must occur no change of the $2^{\text {nd }}$ oscillator's frequency or the $2^{\text {nd }}$ XR22 VCO's loudness (for orientation, check the LED 'AM' (9) for minimum lightning intensity).

5 Output Gain of \sim / \sim signal
Adjusts the maximum output amplitude level of the oscillator's \downarrow / \vee output (With knob 'Bypass' (13) turned fully cw and knob 'Gain' (12) turned fully cw or fully ccw); from $\approx 8 \mathrm{Vpp}$ to 16 Vpp for \geqslant.

6 Low frequency trimmers for 1V/oct adjustment
Adjusts the matching of the $1 \mathrm{~V} / \mathrm{oct}$. tracking for $\mathrm{CV}<0 \mathrm{~V}$ (negative CVs, e.g. $-1 \mathrm{~V},-2 \mathrm{~V},-3 \mathrm{~V}$). For adjustment, please read above, under ' $1 \mathrm{~V} /$ Octave Adjustment'.

7 F2 knob (2) tuning (on inner board, nearby F2 potentiometer)
To ensure that the '0' of the knob's F1 (1) and F2 (2) scales are in accordance to each other, the F2 route is fine-tuned with this trimmer and the knob F2 (2) 0-position may be aligned to F1 (1).

8 Slide switch (4) 'mid' range tuning (on inner board, nearby F1 potentiometer)
This trimmer fine-tunes the oscillaor's frequency when switch 'Lo-Mid-Hi' (4) is in 'mid' position to ensure that the oscillator freq. in 'mid' position is exactly 4 octaves lower than in 'hi' position.

9 Slide switch (4) 'lo' range tuning (on inner board, nearby F1 potentiometer)
This trimmer fine-tunes the oscillaor's frequency when switch 'Lo-Mid-Hi' (4) is in 'lo' position to ensure that the oscillator freq. in 'lo' position is exactly 4 octaves lower than in 'mid' position.

 Modular
5. Contact \mathcal{E} Support

cg-products.de/module/xr22-vco-ft/
cg-products.de

This is the documentation for version Rev.6.2
Versions Rev.6.2 or higher (in comparison to previous versions) have 'Lo-F' instead of 'Hi-F' trimmers on the backside board.

Older versions
https://www.cg-products.de/documentations/XR22FT_Documentation-Rev.6.0.pdf
https://www.cg-products.de/documentations/XR22FT_Documentation-Rev.5.2.pdf https://www.cg-products.de/documentations/XR22FT-Rev.4_Documentation.pdf

Youtube Video:
https://www.youtube.com/watch?v=ETP8qT1 tgrY

Christian Günther
Forster Str. 50
10999 Berlin
info@cg-products.de

Phone: ++49 3061286299
Mobile ++49 1787699267

